Subspaces of Maximal Operator Spaces
نویسندگان
چکیده
A Banach space E can be embedded into B(H) in a variety of ways. The embeddings giving rise to the minimal and maximal possible operator space norms (introduced in [1], [3] and [4] and further investigated in [21] and [22]) are especially interesting to us. Let A be the set of all functionals on E of norm not exceeding 1 and let B be the set of all linear maps T : E → Mn such that ||T || ≤ 1 (here and below, Mn = B(l n 2 ) and Mnk = B(l n 2 , l k 2)). Consider isometric embeddings JMIN : E → l∞(A) (here l∞(A) is viewed as the set of diagonal operators on l2(A)) and JMAX : E → ( ∑ Mn)l∞(B) →֒ B(H) (here H = ( ∑ l2 )l2(B)), defined by JMINe = ⊕f∈Af(e) and JMAXe = ⊕T∈BT (e). The pairs (E, JMIN) and (E, JMAX) are called the minimal and maximal operator space structures on E and denoted by MIN(E) and MAX(E), respectively. Note that if x ∈ E ⊗B(H), then
منابع مشابه
A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملUSING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS
In this paper, two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded, invertible and self-adjoint linear operator on a separable Hilbert space $ H $. By using the concept of frames of subspaces, which is a generalization of frame theory, we design some algorithms based on Galerkin and Richardson methods, and then we in...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کاملM ar 1 99 4 BANACH SPACES WITH THE 2 - SUMMING PROPERTY
A Banach space X has the 2-summing property if the norm of every linear operator from X to a Hilbert space is equal to the 2-summing norm of the operator. Up to a point, the theory of spaces which have this property is independent of the scalar field: the property is self-dual and any space with the property is a finite dimensional space of maximal distance to the Hilbert space of the same dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007